nips

AI

GO:グラフ最適化用強化学習(2/3)

1.GO:グラフ最適化用強化学習(2/3)まとめ ・GOはGraphSAGEを利用しておりトレーニング時に見た事がないグラフに対して一般化可能 ・GOは規模拡大可能なAttentionが含まれノード間の距離が離れていても依存関係を捕捉可...
AI

PWIL:敵対的トレーニングに依存しない摸倣学習(2/2)

1.PWIL:敵対的トレーニングに依存しない摸倣学習(2/2)まとめ ・PWILは敵対的手法でないためエージェントとエキスパートを直接類似させる事が可能 ・最先端の摸倣学習は敵対的トレーニングに依存しているアルゴリズム的に不安定 ・P...
AI

TFCO:制約付き最適化ライブラリを使用して公平性の目標を設定(3/3)

1.TFCO:制約付き最適化ライブラリを使用して公平性の目標を設定(3/3)まとめ ・制約が適用されるグループがデータセット内で過小評価されてしまう可能性があることに注意が必要 ・各グループの割合が高い別のリバランスされたデータセットに...
AI

TFCO:制約付き最適化ライブラリを使用して公平性の目標を設定(2/3)

1.TFCO:制約付き最適化ライブラリを使用して公平性の目標を設定(2/3)まとめ ・「正しい」制約とは、何を持って公平とするか、または問題とユーザーの要件によって異なる ・矛盾する制約を課す事も可能なので適切な解決策がない制約を指定し...
AI

TFCO:制約付き最適化ライブラリを使用して公平性の目標を設定(1/3)

1.TFCO:制約付き最適化ライブラリを使用して公平性の目標を設定(1/3)まとめ ・機械学習モデルは競合する考慮事項間でバランスを取るようなケースに対処するのが難しい ・TFCOライブラリを使用すると複数の異なる基準に基づく機械学習の...
タイトルとURLをコピーしました