efficientnet

AI

Google Research:2020年の振り返りと2021年以降に向けて(3/5)

1.Google Research:2020年の振り返りと2021年以降に向けて(3/5)まとめ ・機械学習アルゴリズムや基礎理論の研究により効率的な手法の探求が前進 ・強化学習は履歴データの利用やサンプル効率の向上、適用分野の拡大 ...
AI

CLIP:学習していない視覚タスクを実行可能なニューラルネット(3/3)

1.CLIP:学習していない視覚タスクを実行なニューラルネット(3/3)まとめ ・CLIPは一般的な物体認識には優れているが抽象的または体系的なタスクには苦戦 ・CLIPは、言葉遣いや言い回しに過敏で機能させるために試行錯誤も必要 ・...
AI

時系列予測にAutoMLを使用する(1/2)

1.時系列予測にAutoMLを使用する(1/2)まとめ ・時系列予測は重要だがモデルの作成に専門知識が必要で現実世界では利用に制限がある ・AutoMLはMLモデルの作成プロセスを自動化することでMLをより広く利用可能にする ・現実世...
AI

AIのアルゴリズムの効率性は16か月毎に2倍に上昇(2/2)

1.AIのアルゴリズムの効率性は16か月毎に2倍に上昇(2/2)まとめ ・少量のコンピューティングで達成された顕著な進歩の測定に力を注ぐことが重要 ・今後も効率的な最新技術を引き続き追跡し、視覚と翻訳タスク以外も追加して行く予定 ・未...
AI

Image GPT:自然言語処理用の人工知能で画像を生成(3/3)

1.Image GPT:自然言語処理用の人工知能で画像を生成(3/3)まとめ ・iGPTが強力な画像特徴表現を学習可能で教師有り、半教師モデルと匹敵する事が示された ・しかしGPUにV100を使って延べ2500日が必要で画像専用モデルの...
タイトルとURLをコピーしました