基礎理論

基礎理論

ディープなネットワークもワイドなネットワークも同じ事を学習しているのか?(1/2)

1.ディープなネットワークもワイドなネットワークも同じ事を学習しているのか?(1/2)まとめ ・ニューラルネットワークの性能を調整する際はネットワークの深さや幅が調整される ・しかし精度以外にこれらの違いがどのように影響するかについての理解...
モデル

文字情報と画像情報を同じ概念として認識できる人工知能の出現(2/2)

1.文字情報と画像情報を同じ概念として認識できる人工知能の出現(2/2)まとめ ・ニューロンレベルでの単純な分析ではモデルの動作を完全に説明する事は出来ない ・高度な抽象化は人工知能に対する新しい攻撃手法に繋がる可能性がある ・個人やグルー...
モデル

文字情報と画像情報を同じ概念として認識できる人工知能の出現(1/2)

1.文字情報と画像情報を同じ概念として認識できる人工知能の出現(1/2)まとめ ・特定の女優さんの画像や名前に反応するニューロンが人間の脳内で見つかった事がある ・ネットワークで機能するので特定のニューロンが反応するのはおかしいと反論があっ...
基礎理論

Deep Bootstrap Framework:データが無限に存在する世界ではディープラーニングはどうなるか?(2/2)

1.Deep Bootstrap Framework:データが無限に存在する世界ではディープラーニングはどうなるか?(2/2)まとめ ・優れたモデルとトレーニングとは、理想世界で迅速で現実世界では迅速すぎない事 ・事前トレーニングの主な効果...
基礎理論

Deep Bootstrap Framework:データが無限に存在する世界ではディープラーニングはどうなるか?(1/2)

1.Deep Bootstrap Framework:データが無限に存在する世界ではディープラーニングはどうなるか?(1/2)まとめ ・通常、モデルは有限のサンプルを使ってトレーニングをされるのでデータは再利用される ・データが無限に存在す...
基礎理論

転移学習とは何か?

1.転移学習とは何か? ・ディープラーニングは大量のデータと計算機能力を必要とするためハードルが高い ・転移学習は既に学習済みのモデルをベースにして学習をさせるので効率が向上する ・転移学習によりディープラーニングトレーニング時のデータや計...
学習手法

ニューラルネットワークを疎にして推論を高速化(2/2)

1.ニューラルネットワークを疎にして推論を高速化(2/2)まとめ ・密なバージョンから重みの一部を徐々にゼロにしていく事がスパース化のコツ ・トレーニング時間の増加で品質を低下させることなく深層学習モデルをスパース化可能 ・スパースネットワ...
学習手法

ニューラルネットワークを疎にして推論を高速化(1/2)

1.ニューラルネットワークを疎にして推論を高速化(1/2)まとめ ・モデル最適化には大部分の重みが0に設定されているスパースニューラルネットワークが有効 ・しかし良く使われる畳み込みスパース化するツールとサポートするツールがなかった ・XN...
学習手法

GANのトレーニングに役立つ10のヒント

1.GANのトレーニングに役立つ10のヒントまとめ ・GANのトレーニングが突然不安定になっても品質に留意しつつ続ける事が望ましい ・モード崩壊は低い学習率でトレーニングを最初からやり直すと上手く行く事がある ・スペクトル正規化はGANトレ...
基礎理論

ディープラーニングコースを受講した生徒からの興味深い質問(4/4)

1.ディープラーニングコースを受講した生徒からの興味深い質問(4/4)まとめ ・パラメータ数は相関且つ冗長なためモデル容量の目安として最適ではない ・モデル容量は一般化に関連するがDNNを把握するための概念ではなさそう ・専門家以外の人に、...
基礎理論

ディープラーニングコースを受講した生徒からの興味深い質問(3/4)

1.ディープラーニングコースを受講した生徒からの興味深い質問(3/4)まとめ ・batchnormは使用した場所により効果が異なりSGDの分析が困難になる側面がある ・embedding次元を決定する際はできるだけ大きなニューラルネットを使...
基礎理論

ディープラーニングコースを受講した生徒からの興味深い質問(2/4)

1.ディープラーニングコースを受講した生徒からの興味深い質問(2/4)まとめ ・何を重視するかによってミニバッチとシングルバッチの優位性は異なる ・一般化能力を最優先する場合はシングルバッチの方が優れているという見方もある ・バッチ毎に正規...