jeff dean

1/10ページ

深層強化学習を使って半導体チップの設計を自動化

AI

1.深層強化学習を使って半導体チップの設計を自動化 ・機械学習に専用ハードウェアを使用する事が増えているがチップ設計に数年単位の時間がかかる ・チップ設計を強化学習に行わせて、過去の経験から学び、時間をかけて改善するアプローチを実現 ・これによりハードウェアの発展と機械学習の発展に相乗効果が期待できるかもしれない 2.コンピュータの心臓部の設計を強化学習で効率化 以下、ai.googleblog. […]

EfficientDet:規模の拡張が容易で効率的な物体検出ネットワーク(2/2)

AI

1.EfficientDet:規模の拡張が容易で効率的な物体検出ネットワーク(2/2)まとめ ・EfficientDetは物体検出器の解像度/深さ/幅を一緒に拡大する、新しい複合スケーリング手法を採用 ・三つの最適化の結果、従来の最先端モデルを精度で上回りつつmサイズを1/4、計算量を1/10に縮小 ・ヘッドの差し替えによりセグメンテーションタスクでも性能向上と計算量削減を両立できた 2.Effi […]

Google Research:2019年の振り返りと2020年以降に向けて(8/8)

AI

1.Google Research:2019年の振り返りと2020年以降に向けて(8/8)まとめ ・機械学習研究を促進するためにデータセットを公開しGoogle Dataset Searchで探しやすくした ・数百万のタスクを処理しつつ新しいタスクにも自動的に対応する機械学習が長期的目標 ・多様な研究者グループが安心して研究出来る事や新たに参入する研究者に対する支援なども重要 2.オープンデータと […]

Google Research:2019年の振り返りと2020年以降に向けて(7/8)

AI

1.Google Research:2019年の振り返りと2020年以降に向けて(7/8)まとめ ・機械学習をロボットの制御に応用するために特に強化学習を使った研究が行われた ・世界モデルの学習やポリシーにランダム性を取り込む事、オープンソースなハードなど ・TensorFlowは2.0がリリースされコンパイラ等の周辺ツールも続々改良されている 2.ロボット制御とコミュニティへの支援 以下、ai. […]

Google Research:2019年の振り返りと2020年以降に向けて(6/8)

AI

1.Google Research:2019年の振り返りと2020年以降に向けて(6/8)まとめ ・従来は分割して段階的に行った作業を大規模ニューラルネットワークで一気にやる事が主流になりつつある ・これらの研究結果はBERTの検索エンジンへの投入を初め実世界で使われるようになってきている ・機械による知覚は静止画像から動画やライブ性、意味や複雑な状況の把握などに対象が移ってきている 2.自然言語 […]

1 10