automl

1/8ページ

Google Research:2019年の振り返りと2020年以降に向けて(5/9)

AI

1.Google Research:2019年の振り返りと2020年以降に向けて(5/9)まとめ ・2019年はニューラルネットワークのトレーニングにどのような力学が働くのか特性を理解を目指した ・AutoMLの研究も継続し、既存モデルの改良や特定ハードに特化したモデルなど様々な改良を実施 ・表形式データの取り扱いに特化したAutoML Tablesはデータサイエンティストのコンペで好成績収めた […]

人工知能とデータサイエンスの2019年の主な進展と2020年の予測research編(3/3)

AI

1.人工知能とデータサイエンスの2019年の主な進展と2020年の予測research編(3/3)まとめ ・ビジネスにAIを採用させる事を成功するためにはビジネス固有のカスタムソリューションが必要 ・より複雑なデータサイエンスの問題には、特定分野の専門家による介入とガイドが不可欠となる ・良い目的で使用されるAIと悪い目的で使用されるAI間の綱引きは引き続いていく 2.DIY AI時代 以下、ww […]

MobileNetV3:次世代のオンデバイス視覚モデル(3/3)

AI

1.MobileNetV3:次世代のオンデバイス視覚モデル(3/3)まとめ ・精度とEdge TPU上で実行された際の速度を両立させるAutoMLをした結果MobileNetEdgeTPUモデル誕生 ・既存のモバイルモデルよりも同一精度でより早い応答速度もしくは同一応答速度でより高い精度を実現 ・しかしMobileNetEdgeTPUをモバイルCPUで実行するとMobileNetV3と比較してパフ […]

MobileNetV3:次世代のオンデバイス視覚モデル(1/3)

AI

1.MobileNetV3:次世代のオンデバイス視覚モデル(1/3)まとめ ・スマートフォンなどのデバイス上で実行される事が前提のニューラルネットワークMobileNetV3の発表 ・オンデバイスでの実行に最適化されているがMobileNetV2までの手動設計ではなくAutoMLベースモデル ・モバイルCPU上でMobileNetV3はMobileNetV2の2倍の速度で同等の精度を達成している […]

皆のためのMLモデルの構築:機械学習の公平性を理解する(2/3)

AI

1.皆のためのMLモデルの構築:機械学習の公平性を理解する(2/3)まとめ ・what-ifツールを使うと個々の特徴が個々のデータポイントにどのような影響を与えているのかを確認可能 ・データの偏りを無視するために特定の特徴を考慮しないように調整した上で最高の精度を目指す事も出来る ・他にも「Equal opportunity」や「Equal accuracy」など様々な最適化戦略をデータに合わせて […]

1 8