公平性

公平性

TFCO:制約付き最適化ライブラリを使用して公平性の目標を設定(3/3)

1.TFCO:制約付き最適化ライブラリを使用して公平性の目標を設定(3/3)まとめ ・制約が適用されるグループがデータセット内で過小評価されてしまう可能性があることに注意が必要 ・各グループの割合が高い別のリバランスされたデータセットに制約...
公平性

TFCO:制約付き最適化ライブラリを使用して公平性の目標を設定(2/3)

1.TFCO:制約付き最適化ライブラリを使用して公平性の目標を設定(2/3)まとめ ・「正しい」制約とは、何を持って公平とするか、または問題とユーザーの要件によって異なる ・矛盾する制約を課す事も可能なので適切な解決策がない制約を指定しない...
公平性

TFCO:制約付き最適化ライブラリを使用して公平性の目標を設定(1/3)

1.TFCO:制約付き最適化ライブラリを使用して公平性の目標を設定(1/3)まとめ ・機械学習モデルは競合する考慮事項間でバランスを取るようなケースに対処するのが難しい ・TFCOライブラリを使用すると複数の異なる基準に基づく機械学習の問題...
公平性

ML-fairness-gym:機械学習システムの長期的な影響を調査するツール(3/3)

1.ML-fairness-gym:機械学習システムの長期的な影響を調査するツール(3/3)まとめ ・機会均等エージェントは公平性を担保しようとして多くの貸付を行い信用格差を拡大する側面がある ・重視する指標が「グループ間の信用格差」なのか...
入門/解説

ML-fairness-gym:機械学習システムの長期的な影響を調査するツール(2/3)

1.ML-fairness-gym:機械学習システムの長期的な影響を調査するツール(2/3)まとめ ・固定したデータセットを利用した公平性の確認は2つの欠陥がある事が知られている ・第一にテストセットが不完全かシステム固有のバイアスを内包し...
入門/解説

ML-fairness-gym:機械学習システムの長期的な影響を調査するツール(1/3)

1.ML-fairness-gym:機械学習システムの長期的な影響を調査するツール(1/3)まとめ ・機械学習の公平性は一般的に固定したデータセットを利用して公平性を確認する事で行われる ・機械学習の影響を受けたデータが次の入力に使われるよ...
入門/解説

Explainable AI:説明可能なAI(3/3)

1.Explainable AI:説明可能なAI(3/3)まとめ ・xAIよりAIが内包する偏見(bias)の解決に力を割くべきと主張する人もいる ・人間の意思決定も理由を説明できていない可能性があるが機械に説明を求めるのは意義があるのか?...
入門/解説

Google Research:2019年の振り返りと2020年以降に向けて(1/8)

1.Google Research:2019年の振り返りと2020年以降に向けて(1/8)まとめ ・Google Researchを率いるJeff Deanによる恒例の年初投稿。去年の振り返りと今後の方向性 ・AIの倫理的利用についてはモデ...
基礎理論

機械学習のトップマインドによる2020年のAI予測(3/3)

1.機械学習のトップマインドによる2020年のAI予測(3/3)まとめ ・ニューラルネットワークを訓練する際の計算は非常に無駄が多く根本的な再考が必要 ・AIの解釈可能性の向上にはニューラルシンボリックアプローチが有用とIBMは考えている ...
公平性

Fairness Indicator:公正な機械学習を構築するためのツール(3/3)

1.Fairness Indicator:公正な機械学習を構築するためのツール(3/3)まとめ ・Fairness IndicatorsはTensorFlow関連のツールを使っていると簡単に呼び出す事が出来る ・TensorFlow関連のツ...
公平性

Fairness Indicator:公正な機械学習を構築するためのツール(2/3)

1.Fairness Indicator:公正な機械学習を構築するためのツール(2/3)まとめ ・Fairness Indicatorsを使用すると公平性基準の計算と視覚化が可能になり、独自の基準を追加する事も可能 ・Fairness In...
公平性

Fairness Indicator:公正な機械学習を構築するためのツール(1/3)

1.Fairness Indicator:公正な機械学習を構築するためのツール(1/3)まとめ ・機械学習は不公平な偏見(バイアス)を反映または強化してしまう危険性がある ・GoogleがAI開発時の原則としてかかげるAI principl...